長寿命化は経済に役立つか

東京大学大学院
工学系研究科 精密工学専攻
教授 梅田 靖

はじめに

- 現代の大量生産・売り切り型・売上高至上主義の下では、「長寿命化は経済に役立 たない」のは自明なのではないか?
 - 製品販売、素材の需要が低下し、製造業全体が縮小するし、経済全体が活性 化しない
- ここでは逆に、長寿命化が経済にプラスになるための条件を考えてみたい
 - 長寿命化の対象
 - » 多分、サービスの長寿命化というのは考えなくて良さそうなので、製品、部品、 材料の長寿命化というものが概念として成立する
 - ここでは単純のため「製品の長寿命化」に焦点を絞る
 - 長寿命化を議論すべきセクター
 - » 私の中では、長寿命化が経済にプラスになる、という意味は、長寿命製品が ユーザ(B2B、B2C、C2C)に受け入れられること。その意味で、製品提供者 とユーザの界面を考える

長寿命化製品の経済に対するプラスの効果

- 所有物の場合、C2C、C2Bの中古販売を起点としたCEコマースが活発になる
 - それを活性化するためには、適正な中古価格の値付けが必要
- 製品、部品、材料を長く使い続けられるので、
 - メンテナンス産業が活発化する
 - » そのためには、メンテナンスのQCDがユーザに受け入れられるものでなければ
 - 適切に処理後に、新製品へ投入すれば、製造業の生産コストが下がる 例) レンズ付きフィルムのストロボユニットのように、部品のリユース前提の価格設定
 - 適切に処理後に、PSS産業が、サービス提供のための財として活用すれば、コストダウンにつながる
 - → これらのコストダウンをそのまま販売価格やサービス価格の低下につなげると、経済にプラスの効果にならない?デフレ?可処分所得が大きくなるからプラスになる?(実は経済学がよく分かっていない)
- ユーザにとって長く使い続けることは、買い替え作業が発生しない、使用方法の再学習を必要としない、愛着があるものを使い続けられるなどのメリットがある
 - → 現代の経済システムの下では、これが経済的なメリットとして表出化しないことが問題。そのためには製品販売ではなく、レンタル、リース、サブスク(しかしこれは、ユーザにとってはコストアップ)

長寿命化をユーザが喜ばない理由

A) 劣化により、壊れやすくなる

バスタブ曲線: 必ずしもそうでないと言う話 はこの場では大して面白くないであろう

- B) 新製品が欲しい
- C) 新製品に比べて技術が古い、技術進歩の足かせ
- D) 新製品に比べて省エネ性が劣る
- E) 新製品に比べて機能が劣る
- F) 新製品に比べて汚い
- G) 長期使用後に修理しようとしても部品が手に入らない
- H) 長期使用後に修理しようとしてもメーカーがなくなっていて修理できない
- l) 修理コストが高い。最悪、製品価格と逆転する

寿命の分類

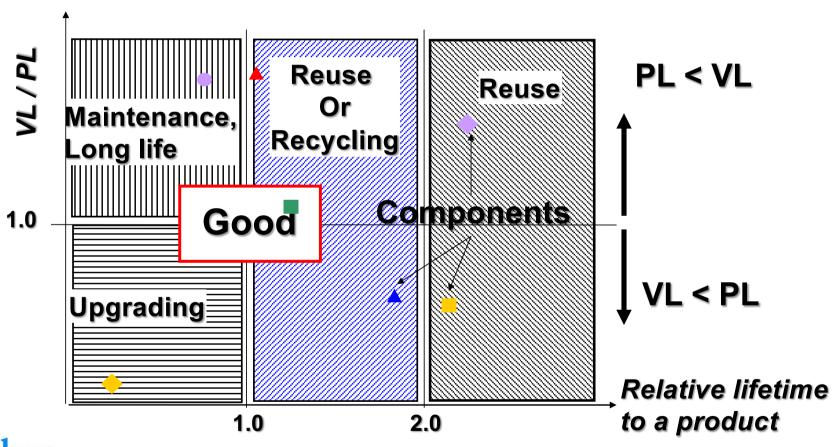
- 経済寿命
 - 維持コストが新品調達コストを上回る
- 制度的寿命
 - 社会システム的に使えなくなる
 - 例)アナログテレビ、フロンを使用したエアコン、・・・
- 物理寿命
- 価値寿命

物理寿命と価値寿命

- 機能消費(例:飲料、鉛筆):主機能が不可避的に消費される製品の場合、消費される機能が廃棄の主要因となる
- 故障・寿命:製品が物理的に故障したり、劣化した場合、廃棄される可能性がある
- 需要消滅(例:栓抜き):そもそのその機能が必要なくなると、その 製品は使われなくなる
- 容量・サイズ(例:冷蔵庫、子供靴):容量や大きさが重要な製品では、容量や大きさがユーザの要求を満たさなくなると廃棄される
- 外観(例:スポーツカー、衣類):外見が重要な製品では、外見の陳 腐化が廃棄の引き金となる
- 新機能・技術向上(例:パソコン、スマートフォン):技術進歩が速い 製品の場合、競合製品に比べて機能や技術が陳腐化すると廃棄
 UTokyo される

ライフサイクル設計の考え方

• 基本原則


- 製品・部品を物理寿命まで使い尽くす

- 部品を廃棄要因毎にモジュール化して適切なライフサイクル・オプション を選択する

	製品の 廃棄理由		クリティカルでない 部品	循環方法			
	機能消費	必然的に消費		回収システムの有無によりメ			
* I Toky	物理寿命	リデュース 長寿命化設計 メンテナンス	リデュース リユース	ンテナンスか製品再生 ライフサイクル管理 ビジネスオプションとしての			
	価値寿命	リデュース アップグレード		リースやレンタル			
O TORY)						

廃棄要因分析に基づくライフサイクル戦略決定

長寿命化をユーザが喜ばない理由

- A) 劣化により、壊れやすくなる
- B) 新製品が欲しい
- C) 新製品に比べて技術が古い、技術進歩の足かせ
- D) 新製品に比べて省エネ性が劣る
- E) 新製品に比べて機能が劣る
- F) 新製品に比べて汚い
- G) 長期使用後に修理しようとしても部品が手に入らない
- H) 長期使用後に修理しようとしてもメーカーがなくなっていて修理できない
- I) 修理コストが高い。最悪、製品価格と逆転する

最適更新年数

	1%	2%	3%	4%	5%	6%	7%	8%	9%	10%	11%	12%	13%	14%	15%	16%
0.0	_	_	1	-	_	_	-	-	-	-	1	_	-	-	_	_
0.5	9. 7	6.8	5. 5	4. 7	4. 2	3.8	3. 5	3. 2	3.0	2.9	2.7	2.6	2.5	2.4	2.3	2.2
1.0	13. 5	9.4	7.6	6.5	5. 7	5. 2	4.8	4.4	4. 1	3. 9	3. 7	3. 5	3.4	3. 2	3. 1	3.0
1.5	16. 4	11.3	9. 1	7.8	6.9	6. 2	5. 7	5.3	4.9	4.6	4.4	4.2	4.0	3.8	3. 7	3.5
2.0	18.8	12.9	10.4	8.9	7.8	7.0	6.4	6.0	5.6	5. 2	5.0	4.7	4.5	4.3	4. 1	4.0
2.5	20.8	14. 3	11.5	9.8	8.6	7.8	7. 1	6.6	6. 1	5.8	5.4	5. 2	4.9	4. 7	4.5	4.3
3.0	22.7	15.6	12.4	10.6	9.3	8.4	7. 7	7. 1	6.6	6. 2	5.9	5.5	5.3	5.0	4.8	4.6
3.5	24. 4	16. 7	13. 3	11.3	9.9	8.9	8. 2	7.5	7.0	6.6	6.2	5.9	5.6	5.4	5. 1	4.9
4.0	25. 9	17. 7	14. 1	12.0	10.5	9.5	8.6	8.0	7.4	7.0	6.6	6.2	5.9	5.6	5.4	5. 2
4. 5	27. 3	18. 7	14. 9	12.6	11. 1	9.9	9. 1	8.4	7.8	7.3	6.9	6.5	6.2	5.9	5.6	5. 4
5.0	28.7	19.6	15.5	13. 2	11.6	10.4	9.5	8.7	8. 1	7.6	7.2	6.8	6.4	6. 1	5.9	5.6

横軸:使用段階の消費電力改善率/年

縦軸: 製造・廃棄に必要なエネルギー/使用段階の年間消費エネルギー

最適更新年数

	1%	2%	3%	4%	5%	6%	7%	8%	9%	10%	11%	12%	13%	14%	15%	16%
0.0	_	_	-	-	_	_	_	_	-	_	_	_	_	_	-	_
0.5	9.7	6.8	5. 5	4. 7	4. 2	3.8	3. 5	3. 2	3 ₁ 0	2.9	2.7	2.6	2.5	2.4	2.3	2.2
1.0	13.5	9.4	7.6	6.5	5. 7	5. 2	4.8	4.4	4/1	3. 9	3. 7	3.5	3.4	3. 2	3. 1	3.0
1.5	16.4	11.3	9. 1	78	6.9	6. 2	5. 7	5.3	4	4.6	4.4	4. 2	4.0	3.8	3. 7	3.5
2.0	18.8	12.9	10.4	8. 🦠	7.8	7.0	6.4	6.0	_ _	5.2	5.0	V # #		<u>√</u> 3	4. 1	4.0
2.5	20.8	14.3	11.5	9.8	<u>_6</u>	7.8	7. 1	エア	コン	5. 8	5.4	冷蔵庫		7	4. 5	4.3
3.0	22.7	15. 6	12.4	10.6	テレビ	. [7. 7	P=0.		5. 2	5.9	P=1. 43		0	4.8	4.6
3.5	24. 4	16.	目動車	$\overline{}$	P=1.45	5	8.2		9.10%	5.6	6.2	$\alpha = 1$	1. 20%	4	5. 1	4.9
4.0	25.9		=2.39	0	$\alpha = 4$.	16%	8.6		· · · ·	√ 7.0	6.6	6.2	5.9	5.6	5.4	5. 2
4. 5	27.3	18. °	1 00	$\frac{6}{5}$			9. 1	8.4	7.8	7.3	6.9	6.5	6.2	5.9	5.6	5.4
5.0	28.7	19.		$\frac{1}{2}$	11.6	10.4	9.5	8.7	8. 1	7.6	7.2	6.8	6.4	6. 1	5.9	5.6

1995~2000年あたりの日本のデータ

横軸:使用段階の消費電力改善率/年

縦軸: 製造・廃棄に必要なエネルギー/使用段階の年間消費エネルギー

その後の分析(1)

Draduat	Optimum circulation period (actual usage period) [years]							
Product	2000	2	2013					
A/C	25/11)	6.8 (11.6)						
Ref α =	0.018 -> 0.030	5.2 (10.8)						
CR P	=2.48 -> 3.11		α =0.0075					
LCD TV		6.4 (7.9)	<i>P</i> =7.12					
GV	15.1 (10.2)	12.6 (12.3)						
HEV		39 (13.0)						

その後の分析(2)

		α=0.091 -> 0.015
Product	Optimum circulat	P=0.33 -> 0.37 ars]
Floduct	2000	2013
A/C	2.5 (11)	6.8 (11.6)
Refrigerator	3.6 (11)	5.2 (10.8)
CRT TV	6.7 (10.6)	
LCD TV	α =0.070	-> 0.109
GV	15. <i>P</i> =0.52	-> 2.17 3)
HEV		39 (13.0)

長寿命化をユーザが喜ばない理由

- A) 劣化により、壊れやすくなる
- B) 新製品が欲しい
- C) 新製品に比べて技術が古い、技術進歩の足かせ
- D) 新製品に比べて省エネ性が劣る
- E) 新製品に比べて機能が劣る
- F) 新製品に比べて汚い
- G) 長期使用後に修理しようとしても部品が手に入らない
- H) 長期使用後に修理しようとしてもメーカーがなくなっていて修理できない
- I) 修理コストが高い。最悪、製品価格と逆転する

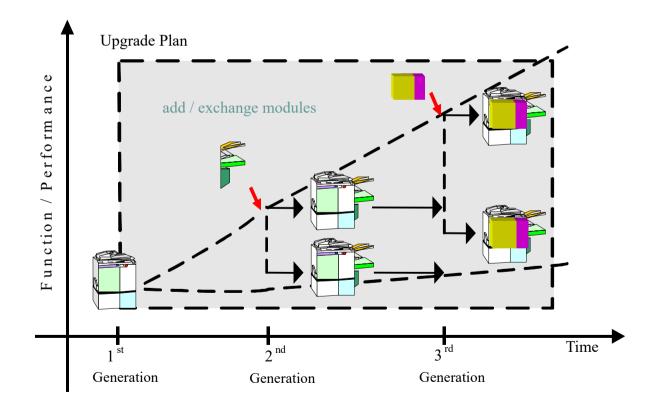
その対策

以下の方法の組み合わせで解決/軽減可能

- 製品設計
 - 問題に該当しない製品を長寿命化する(家具)
 - 適切な寿命設計
 - 技術向上、劣化の早い部分、故障しやすい部分を切り分けてモジュール化してアップグレード設計
- サービスの追加
 - **サービスを提供(エアコン、洗濯機のクリーニング)**
 - サービスレベルアグリーメント契約にする(サブスク、pay per use、・・・)
 - 適切な使用期間での循環管理
 - 時々のニーズに応じた製品提供
 - 異なるクラスタのユーザ間での還流を前提としたシェアリング
- 制度設計
 - メーカへの「修理する権利」対応の義務づけ

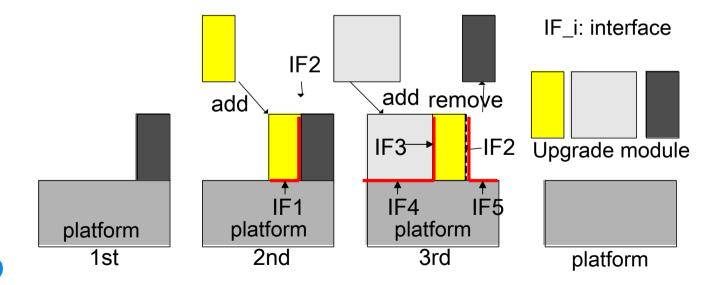
その対策

以下の方法の組み合わせで解決/軽減可能


- 製品設計
 - 問題に該当しない製品を長寿命化する(家具)
 - 適切な寿命設計
 - 技術向上、劣化の早い部分、故障しやすい部分を切り分けてモジュール化してアップグレード設計
- サービスの追加
 - サービスを提供(エアコン、洗濯機のクリーニング)
 - サービスレベルアグリーメント契約にする(サブスク、pay per use、・・・)
 - 適切な使用期間での循環管理
 - 時々のニーズに応じた製品提供
 - 異なるクラスタのユーザ間での還流を前提としたシェアリング
- 制度設計
 - メーカへの「修理する権利」対応の義務づけ

アップグレード設計(1)

- モジュールの追加交換削除により製品機能をアップグレードする設計手法
 - 適切な時期に適切な機能をアップグレード

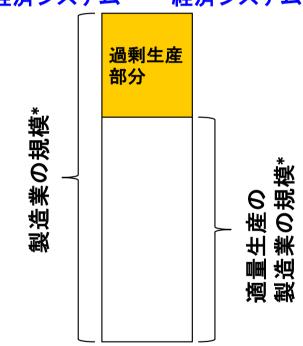


アップグレード設計(2)

- platform:全ての世代で共通の部品構造
- upgrade module:アップグレード対象機能を実現するための各世代で追加/交換/削除されるモジュール
- interface: platformとupgrade moduleとの境界

長寿命化が経済のプラス?

- P.14に述べた方法で対策が取れたとして、それはユーザコストの上昇に結びつく?(大量生産品の使い捨てが一番安い?)
 - Yes
 - »コストアップとそれによるユーザの減少の比率(定量的な需給カーブ) はどうせわからないのだから、経済へのプラスかマイナスかは分から ない?
 - » 資源コスト、循環コストは上昇して行くのだから、いずれペイするよう になる
 - No
 - »コストダウンとそれによるユーザの増加の比率(定量的な需給カーブ) はどうせわからないのだから、経済へのプラスかマイナスかは分から ない?



結局のところ(1)

- 現代の大量生産・売り切り型・売上高至上主義の下では、 「長寿命化は経済に役立たない」のは自明なのではない か? と始めた
- 結局のところ、いつもの議論に戻るのだが、
 - 「量」の経済システムの中では、長寿命化は経済規模を 縮小させ、デメリットが大きくなる
 - 量から離れ、「経験(得られること)」にお金が払われる経済システムの中では、長寿命化はメリットがある
 - » このような経済システムにおいては、現代の製造業の中の過剰生産部分が除去され、「適量」生産構造ができているはず。その上で、長寿命化は、P.2に書いたようなメリットをもたらす
 - 逆に言えば、現状の経済システムの下で、旧来型の製造業は、PSS化に手を出すよりも、過剰生産を増やした方が生産システム、企業体制、販売体制を変えなくて良いので効率的(しかしそれは、需要が飽和していたら効果がない)

現代の 経験価値の 経済システム

* 経済規模を示している訳ではなく、飽くまで旧来型の製造業の規模

FACULTY OF ENGINEERING

結局のところ(2)

- 経験価値の経済システムの下では、長寿命化とユーザの効用は(サービスを介して)切り離され、長寿命化はサービス提供側のコストダウンの有力な手段になるのではないか
- 「現代の経済システム」から、「経験価値の経済システム」への移行の後で、 長寿命化にメリットがあるように書いたが、両者は鶏と卵の関係にあるだろ うから、結局は、「経験価値の経済システム」がどの程度マジョリティになる かが、長寿命化が経済にプラスになるかどうかの境目ではないか?

